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1 Introduction

Women exit STEM (science, technology, engineering, and math) majors at much higher rates

than men, which in part contributes to the gender-wage gap because they miss out on the sizable

premiums associated with employment in these fields.1 To date, little is known regarding women’s

decision to drop out of the STEM pipeline in college. Recent research finds that the instructor-

student gender match plays a role in this decision (Carrell et al., 2010; Hoffmann and Oreopoulos,

2009), and that women’s responsiveness to grades explains some of the phenomenon as well (Rask

and Tiefenthaler, 2008; Ost, 2010), but much remains unexplained. Gaining a better understanding

of the factors that cause women to leave STEM fields during college is important for developing

policy aimed at bolstering this group’s STEM persistence. This paper examines a novel pathway:

To what extent does the composition of a woman’s introductory university STEM course impact

STEM persistence?

There are many ways to define classroom composition. In this study it is defined as the share

of high ability students in a mandatory introductory STEM lecture, where ability includes effort

and motivation, innate ability, and any resources that might aid in academic success.2 There are

several ways in which being assigned to a college lecture with relatively higher ability peers could

affect one’s outcomes. On one hand, this type of environment could be performance enhancing.

Students may benefit directly from higher ability classmates through knowledge spillovers during

class, office hours, or out-of-class group study sessions. Additionally, the average class ability can

affect the overall standard, and students may be motivated to work harder to keep up with their

high achieving peers.

On the other hand, a high achieving classroom environment may be harmful in more subtle

ways by negatively impacting self-perception. The higher the ability of the peers in a classroom,

the harder it is to be ranked high. While in many situations high ability peers can improve perfor-

1Paglin and Rufolo (1990); Murnane et al. (1995); Grogger and Eide (1995); Brown and Corcoran (1997); Wein-
berger (1999); Weinberger (2001); Murnane et al. (2000); Rose and Betts (2004)

2Section 2.1 and Section 2.2 outline why this measure of average class ability is favorable, and from where exoge-
nous variation in the share of high ability students per lecture arises.
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mance, contest theory suggests that large gaps in skills between individuals can have the perverse

effect of reducing effort incentives. Brown (2011) provides empirical evidence for this theoretical

prediction by showing that the presence of a superstar in a PGA golf tournament is associated with

lower performance by the other competitors. In a classroom setting, marginal students may see

themselves as relatively weaker and reduce their effort or even choose to opt out if possible (i.e.,

opt out of the STEM pipeline).

Moreover, women’s STEM persistence may be particularly affected by the class ability compo-

sition. STEM courses have a distinct environment, they tend to be large, difficult, and competitive

relative to non-STEM courses. A National Science Foundation study from the early 2000s, which

surveyed roughly 25,000 undergraduate women in STEM, revealed that women are most likely to

leave STEM during their first year. The two most cited reasons for leaving were dissatisfaction

with grades and the heavy workload, and a distaste for the overall competitive climate (Goodman,

2002). In a related vein, Niederle and Vesterlund (2007) and Garratt et al. (2013) show that women

shy away from competition more than men and that the gender performance gap is exacerbated

under competition (Gneezy et al., 2003). To the extent that increasing the share of high ability

students in the class increases the competitive environment, it may induce the marginal women to

leave.

In addition to the sparse literature on women’s STEM persistence, there exists relatively little

research on post-secondary classroom composition effects because isolating the causal impact is

difficult. Often students, or more indirectly administrators, influence the student make-up of a

classroom. Several studies at the elementary school level, which for the most part rely on data

from the large scale randomized experiment Project STAR, find a positive relationship between

average classmate ability and achievement (Whitmore, 2005; Hanushek et al., 2003; Boozer and

Cacciola, 2001; Hoxby, 2003). Whether these results extend to a higher education setting, however,

is an open question.

To date, the most convincing peer effects study in higher education – which estimates small

positive effects on freshman grade point average – relies on the random assignment of students
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from the United States Air Force Academy to squadrons, which are essentially cohorts (Carrell et

al., 2009).3 This peer group measure is an improvement over previous studies, which define dorm-

mates as the peer group, because squadrons capture a more comprehensive set of students’ peer

interactions.4 None of these studies, however, capture the effects that students within a classroom

may have on individual outcomes because dorm-mates and squadron members do not necessarily

attend the same classes.

In this study, I employ administrative data from a large public research institution, University

of California Santa Barbara, to estimate the relationship between class ability composition in an

introductory STEM course and STEM persistence. This setting is ideal because it circumvents

several empirical challenges associated with estimating composition effects. Firstly, the standard-

ized way in which students load into their first STEM course (General Chemistry) – a mandatory

prerequisite for nearly all STEM majors at most universities – leaves little room for non-random

class enrollment (see Section 2.3). This aspect of the empirical setting allows for the estimation of

class ability composition effects free of the usual problem of self-selection.

Secondly, the Transfer Admission Guarantee (TAG) agreement – a program that offers students

from California community colleges guaranteed admissions to this university and several other

University of California campuses, conditional on meeting certain requirements – generates varia-

tion in the ability composition across sections of this introductory STEM course. In particular, the

TAG agreement creates stark differences in ability between those students who obtain admissions

into the university directly out of high school and those who enter through TAG (see Section 2.1).

Thirdly, the introductory STEM course analyzed, General Chemistry, is a required prerequisite for

most STEM majors and students cannot circumvent the course by applying Advanced Placement

or community college credits, which eliminates another avenue for selection.

3Similarly, Carrell et al. (2013) run an experiment at the USAFA and show low ability students are harmed by
their higher ability squadron members – results which are in-line with my findings. Lyle (2007) uses a similar military
dataset (USMA) and cohort approach and finds no evidence of peer effects. A drawback of both of these studies is that
students from military institutions likely are not representative of the general university population, especially women.

4The following studies use the random assignment of students to dorms to estimate peer effects and find mixed
results. Stinebrickner and Stinebrickner (2006) find small positive peer effects on grades for women. Zimmerman
(2003) and Sacerdote (2001) find small positive peer effects on students’ grades, grade point average, and the take-up
of social networks such as fraternities/sororities. Foster (2006) finds no evidence of peer effects.
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Exploiting this quasi-experimental setting, I show that being in a class with higher ability peers

reduces the probability that women graduate with a STEM degree and has no significant effect on

men. More specifically, a 15 percent increase in the number of high ability students in a General

Chemistry lecture (one standard deviation) reduces the probability that the average woman grad-

uates with a STEM degree by 3.1 percentage-points (6.8 percent). As one might expect, I further

show that the effect is strongest in the bottom third of the math ability distribution. I rule out

grades in the same course as the underlying mechanism by showing that the gender differential

effect persists even after controlling for one’s grade in this introductory course.

The results are informative for at least two reasons. One, they are among the first to show that

classmate influences are an important factor in determining students’ academic success in higher

education, at least for women.5 Two, in contrast to most previous work, I focus on STEM major

completion rather than grades because STEM completion closely relates to occupation choice,

which is an important piece to the gender wage gap story (Murnane et al., 2000; Rose and Betts,

2004).

The remainder of the paper is organized as follows: Section 2 describes the empirical setting.

Section 3 presents the econometric specification and results. Section 4 concludes.

2 Empirical Setting

All data in this study are drawn from the University of California Santa Barbara (UCSB) admin-

istrative data system. UCSB is a selective, public research institution with a large undergraduate

population; enrollment is roughly 23,000 students and the acceptance rate is around 36%. In this

analysis, I study the group of UCSB students who are enrolled in the course CHEM1A – which is

the first quarter of the yearlong introductory STEM sequence, General Chemistry – in a fall quar-

5Feld and Zölitz (2017) in a recent working paper concurrently show that low ability students are harmed by
relatively higher ability peers. Our studies differs in a variety of ways but one key way is that students in their sample
are placed in very small classes (15) compared with the average class size of 330 in my sample. As such, the way in
which peers affect academic outcomes are quite different across these two settings.
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ter between 1997 and 2007.6 This includes 11 entering cohorts of about 1,200 students each, and

tracks them through graduation. Each fall quarter there are four or five sections of CHEM1A with

on average 329 students per section. At this university, and at the majority of other universities,

General Chemistry is the first prerequisite for most STEM majors.7 Students are required to take

this course at UCSB; they cannot apply advanced placement credits or test out of the class, which

is a strategy often used by students to circumvent introductory math and statistics.

General Chemistry is an ideal setting to study the relationship between STEM persistence and

class ability composition because it is a mandatory prerequisite and it has all of the characteristics

common to STEM; the course is difficult and competitive. Twenty-five percent of the university’s

on campus tutoring resources (Campus Learning Assistant Services) go to General Chemistry stu-

dents. Often the course is considered a STEM major weed-out. Earning high grades can be difficult

as the typical curve is 20 percent “As”, 30 percent “Bs”, and 30 percent “Cs” per CHEM1A section.

The final course grade is weighted heavily toward exams with two midterms, two quizzes, and a

final. Homework only counts for 10 percent of one’s final grade. After each exam, students are

notified of their place in the overall grade distribution. Given these characteristics of the course,

studying the STEM persistence behavior of the group enrolled in CHEM1A captures the students

who are most attached to earning a STEM degree.

2.1 Measure of Average Class Ability

To construct the class ability composition variable, the data are divided into two distinct groups,

on-track students (freshmen) and late-track students (sophomores or higher). Importantly, because

of a key University of California policy, these two groups differ in observable and unobservable

ways. On-track students are students who are enrolled in CHEM1A in the fall quarter of their first

year at the university. They were admitted into the university directly out of high school and are on-

track to graduate with a STEM degree in four years. Late-track students are upperclassmen taking

6This gateway sequence consists of CHEM1A, CHEM1B and CHEM1C; CHEM1A is offered in the fall, CHEM1B
in the winter, and CHEM1C in the spring.

7Appendix Table A1 lists the STEM majors that require CHEM1A.



7

CHEM1A in a fall quarter other than their freshman year; they are behind schedule to graduate

with a STEM degree in four years. Roughly 85 percent of the observations in the sample are on-

track, totalling 12,230 students. The other 15 percent of students (1,912) are late-track. I leverage

this variation to construct the main measure of average class ability, the share of on-track students

in a section. From here forward, I use the term section to refer to what many would consider a

lecture or class. Sections are defined as a unique time, instructor, and year.

In order for the share of on-track students in a section to be a good measure of average class

ability, the following must hold: (1) late-track students, on average, must differ in ability from

on-track students, and (2) there must exist exogenous variation across CHEM1A sections in the

share of on-track students (or alternatively, the share of late-track students). Below I outline the

institutional structure which suggests that late-track students are relatively lower ability than on-

track students. The institutional structure also provides insight as to how variation in the share

of on-track students across sections arises. Finally, I provide evidence from the data supporting

conditions (1) and (2).

There are several reasons to believe that late-track CHEM1A students differ on observable

(and unobservable) characteristics from on-track students – in particular that they are, on average,

lower ability. The late-track group includes three types of students: upperclassmen who switched

to a STEM major at some point after entering the university, upperclassmen that needed a year

of preparatory courses – remedial math and science – before starting pre-major requirements, and

transfer students. In this sample, conditional on being late-track, 621 are transfers and 1,291

are non-transfer upperclassmen. The first type of upperclassmen, although they are behind in

their STEM courses, are not necessarily lower ability. The second type, those who come to the

university with an inadequate background and take a year of preparatory courses, are, on average,

lower ability.

Transfer students, the third type, typically come from the local city college (or community

college). In fact, in the 2015 entering cohort, 94 percent of the transfer students came from a Cali-
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fornia community college.8 Transferring from a two-year state institution to one of the University

of California (UC) campuses is particularly common in California because of the TAG agreement

(Transfer Admission Guarantee). This program guarantees admission to one of six UCs if a student

completes 30 units with the given minimum grade point average at a public California two-year

college.9 The TAG agreement was put into place in the early 1980s and the participating UCs

include: Santa Barbara, Davis, San Diego, Irvine, Riverside, and Merced.

Central to this paper’s empirical approach, TAG and other transfer students are likely finan-

cially constrained or did not earn admissions into UCSB directly out of high school. Either way,

on average, they have lower high school grades and socioeconomic characteristics relative to the

on-track group. To provide additional context on TAG students, in 2014 UC San Diego petitioned

to opt out of the TAG agreement stating that it was squeezing out too many traditional students

who had more competitive applications.10

Using the share of on-track students in a section as the main measure of average section-mate

ability in this setting is preferred to other measures typically used in the literature such as the sec-

tion average of a predetermined characteristic that proxies for ability, i.e. SAT scores. The variable

on-track potentially captures a more comprehensive set of observable and unobservable charac-

teristics related to an individual’s ability compared with, for example, SAT score. Furthermore,

twenty-five percent of the sample’s SAT scores are missing since TAG students and other transfers

are not required to take the SAT, which, in fact, is the group that generates variation in ability

across sections.11

Finally, the data support the notion that on-track students are on average higher ability than

late-track students on observable characteristics. Table 1 reports average predetermined student

characteristics and outcomes for each group. Column 1 reports averages for transfer students –

8This statistic comes from the following website: https://admissions.sa.ucsb.edu/docs/default-source/PDFs/ucsb-
admission-guide-2016.pdf?sfvrsn=2. Unfortunately, these numbers were not available for the time period of the
dataset.

9Grade point average requirements vary by institution, but range from 2.8 to 3.3
10Information on UCSD’s decision to opt out of the TAG agreement can be found in the San Diego Union-Tribune:

http://www.sandiegouniontribune.com/news/2012/may/01/ucsd-ends-community-college-transfer-program/
11In a robustness check that is available upon request, I use a more conventional linear-in-means, leave-me-out

approach and find similar results.
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a subset of late-track students, Column 2 reports averages for all late-track students, Column 3

includes averages for on-track students, and Column 4 reports the difference in means between

on-track and late-track students and indicates if the difference is statistically different from zero.

Note that transfer students conditional on reporting an SAT score, on average, have 44 percent of

a standard deviation lower SAT math score than the on-track group, a characteristic that tends to

be a strong predictor of STEM success. Put differently, the average transfer SAT math score is

around the 69th percentile on the national scale while the average on-track score is around the 81st

percentile. Moreover, on-track students on average have a higher high school grade point average

than non-transfer, late-track students.12 Finally, on-track students on average are more likely to

graduate in STEM, and their actual grade in CHEM1A is a full letter grade higher.

2.2 Variation in the Share of On-Track Students Across Sections

Variation in CHEM1A class composition arises from late-track student enrollment patterns. While

on-track students face a no-priority registration policy, late-track students are able to selectively

enroll and they do.13 Late-track students register for fall classes the previous spring before on-track

students, who register in the summer. Based on estimated freshmen fall enrollment, the university

holds a share of the CHEM1A seats in each section for incoming freshmen – the majority of seats

are held for freshmen as this is typically a first-year course – and offers the other seats to late-track

students. In some cases late-track students fill all of the seats allotted to them in a given section and

in other cases they do not. Once late-track students have enrolled, all of the remaining seats are

filled with on-track students who load into sections through a standardized process which achieves

as good as random assignment.

For illustrative purposes, suppose that there are four sections of CHEM1A offered in a given

year and each has a maximum enrollment of 100. Further suppose that the university decides to

12Unfortunately, the reported high school grade point average for transfer students is from their previous college
(typically Santa Barbara City College) and all other reported high grade point averages are from high school. The
former is on a 4 point scale while the latter is on a 4.75 scale to account for Advance Placement courses. As such, the
two GPAs are not comparable which is why in Table 1 “ High School GPA” is not reported for transfers.

13See Section 2.3.4 for details on late-track student’s enrollment patterns.
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make available 30 percent of the seats in each section for late-track students. If in one of the

sections all 30 seats are filled, in the second 25 are filled, and in the third and fourth only 20 and 15

respectively are filled, then variation will arise in the number of late-track students across sections.

In the second stage of the process, on-track students fill the remaining seats in each section in a

standardized way. Because CHEM1A is a highly demanded class, it is rare for a section not to fill

to capacity. The assignment process for on-track students and the enrollment patterns of late-track

students are discussed in detail in Section 2.3.

2.3 Student Assignment to Lectures

2.3.1 Identifying Assumption

The aim of this study is to understand how the ability composition of a section differentially affects

STEM persistence for men and women. In order to interpret the estimates as causal a sufficient but

not necessary assumption is that characteristics explaining a student’s academic achievement are

uncorrelated with the quality of classmates in a student’s section. Random assignment of students

to sections will ensure the validity of this assumption. However, because the goal is to understand

how the average class ability differentially effects men and women, in order to interpret the esti-

mated effect as causal, it is only necessary that there is no gender based selection. For example, the

causal interpretation of the estimated effect is questionable if high ability women systematically

enroll in sections with a low share of on-track students and high ability men systematically enroll

in sections with a high share of on-track students. In this scenario, it is unclear if the composition

estimate is capturing the true effect of ability composition on STEM persistence or if it is reflecting

student selection into sections.

To alleviate concerns of student selection and gender based student selection, in the analysis

I only study the outcomes of freshmen (on-track students) and rely on UCSB’s standardized no-

priority enrollment process for this group, which achieves assignment to sections that is as good

as random (see Section 2.3.2). While the institutional structure is such that there should be es-

sentially no sorting of on-track students into sections, in Section 2.3.3 I provide multiple tests of
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randomization that support both the stronger assumption of no student selection in general, and

the weaker but more relevant assumption of no differential selection by gender. Even though late-

track students do not directly enter the analysis, they do through the composition variable. As

such, Section 2.3.4 documents late-track student’s enrollment patterns and provides evidence that

their sorting is not a threat to identification. Finally, as a way to further reduce the possibility of

student selection introducing bias, I include several fixed effects: year, time of day, and instructor

(see Section 3.1). The results are also robust to the inclusion of additional fixed effects: instructor

by year, instructor by time of day, instructor by student gender, and time of day by student gender.

2.3.2 Institutional Background – Student Assignment to Sections

During my sample period, 95% of all first year students attend a two-day summer orientation either

in June, July or August where they register for their fall quarter courses.14 Importantly, there is no

priority based registration during or before summer orientation for this group. In each orientation

session, a percentage of the total seats available in a given “first year” course are made available to

that particular orientation session. This equalizes the probability of enrolling in a particular section

across all orientation sessions and eliminates the issue of students who attend earlier orientation

dates getting all the “good” classes.

At orientation each student is assigned to a group of 15 students. They are placed into orien-

tation groups by declared major, but groups within major are formed randomly. With this group,

students attend seminars about university life, map out a class schedule for the first quarter (and

first year) under the guidance of a trained orientation leader for their declared major, and register

for their first quarter classes. For instance, students in a pre-Biology major orientation group are

advised by their leader to take General Chemistry during their first quarter so that they are on-track

to get into the major and ultimately graduate in four years.

The structure of course registration is such that only one student in an orientation group is able

to register at a time; each group has one laptop and one leader who facilitates registration. Within

14Each summer 12 freshman orientation dates are offered and students can attend the date of their choice.
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each group a registration queue is formed by random draw (i.e. creating registration position 1-

position 15). The student who draws position 1 registers first. Registration opens at the same time

for all groups within an orientation session. According to the Director of Orientation Programs

and Parent Services at UCSB, the high demand for CHEM1A, the limited seats, and the random

registration order makes strategic CHEM1A registration very unlikely. Making selection even

harder, the Chemistry Department strictly enforces a no switching policy. A student can only

switch lectures during the first week of the quarter and he must have a student in his desired lecture

replace him in his original one: a one for one switch.15

One concern related to student selection that I cannot directly rule out is the possibility that

students who attend summer orientation differ from those who do not. Students who do not at-

tend summer orientation register for their fall classes in mid-September prior to the start of the

quarter but after all orientation attendees have registered. Composition estimates will be biased if

students who do not attend summer orientation are non-representative and systematically register

for sections based on the ratio of on-track to late-track students. If I could observe CHEM1A reg-

istration dates I could test for balance using observed predetermined traits between students who

attend summer orientation and those who do not. Since these data are unavailable for my sample

period, I have instead obtained registration data for all freshmen enrolled in CHEM1A in fall 2013.

Although these students are not in my main sample, the registration behavior should be similar, as

the general structure of freshman registration is the same between the two periods.

For this group of students – all freshmen enrolled in CHEM1A in fall of 2013 – I observe their

CHEM1A registration date and time as well as demographics and CHEM1A instructor charac-

teristics. Ninety percent of this sample attended a summer orientation/registration, slightly lower

than the 95% in the main sample. Comparing the observable characteristics of students who attend

orientation and those who do not, underrepresented minorities is the only group who is underrep-

resented in orientation attendance; 38% of the orientation attending group are URMs compared

15All information regarding freshman orientation and registration comes from an interview with Kim Equinoa
(kim.equinoa@sa.ucsb.edu) who was the director of Orientation Programs and Parent Services at UCSB during the
years in which the data for this analysis are from. Information on the Chemistry Department’s no switching rule comes
from the administrative office within the Chemistry Department.
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to 49% of the non-orientation attending group. There appears to be no selection into orientation

attendance by gender, parent’s education level, whether one has a high school GPA in the top half

of the distribution for the sample, whether one scores in the top half of the SAT math or SAT verbal

distribution for the sample, type of high school one attended, and English language learner status.

Most importantly, the data indicate that there is no statistically significant difference in the share

of on-track students in a section for those who attend summer orientation and those who do not.

Appendix Table A2 reports these results.

Finally, even though the way in which on-track students load into this introductory STEM

course leaves little room for selective enrollment, suppose a student does have enough flexibility

to manipulate her schedule. It is possible a student has preferences for a particular section start

time, the day of the week that the section meets, or for a particular instructor. There is no evidence,

however, of students sorting in a differential fashion related to start time – that is, high ability

women are no more likely to select into the morning sections than men – and, all specifications

include a control for section start time. In this setting, it is also not possible for students to sort

by the day of the week that the section meets because all CHEM1A sections meet on the same

days: Mondays, Wednesdays and Fridays for fifty minutes each meeting. Selective enrollment

based on instructor preferences is also of little concern because on-track students lack information

about instructors; they enroll in classes before they move to campus. Moreover, the data for this

study come from a time period that, for the most part, predates the online site Rate My Professor

and other similar sites that provide a public forum to disseminate information on instructor quality.

Instructor fixed effects are also included in all regressions, further alleviating the concern that

sorting based on time-invariant instructor characteristics could bias the point estimates.

2.3.3 Is On-track Student Assignment to Sections Really Random?

While the identifying assumption – no student sorting across sections and/or no gender based sort-

ing – is fundamentally untestable, I provide several indirect tests of its plausibility. First consider

a series of balance regressions presented in Table 2. Each column in this table corresponds to a
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separate regression where a different predetermined student characteristic is regressed on lnOitnd

and Fi ∗ lnOitnd . lnOitnd is the log of the number of on-track students in a section for student i who

takes CHEM1A in year t with instructor n at time of day d. Fi ∗ lnOitnd is that variable interacted

with a female indicator.16 Year fixed effects are also included as students within a year face the

same no-priority registration, but not necessarily across years. Excluded from the test are two sec-

tions that have enrollment of less than 100 as they were likely added last minute to meet a larger

than expected demand for CHEM1A. Results for the main analysis are robust to the exclusion of

these two sections.

If selection is present, the coefficient on lnOitnd will attain statistical significance. Furthermore,

if gender based selection exists, the interaction term Fi ∗ lnOitnd will be significant. Although the

coefficient on lnOitnd is statistically different from zero at the 10% level in three cases, the esti-

mates are essentially zero in magnitude. More importantly for my purposes, there is no evidence of

a gender differential in selection across section composition; Fi∗ lnOitnd is not statistically different

from zero in any of the five cases.

As a second way to empirically test the assumption of random assignment, I employ the re-

sampling technique used by Carrell and West (2008) and Lehmann et al. (1986). I test for student

selection into CHEM1A sections by five pre-treatment characteristics: high school grade point av-

erage, math SAT score, verbal SAT score, parent is a college graduate, and unrepresented minority

status. For each section I calculate the number of on-track students in a section and then randomly

draw 10,000 samples of equal size without replacement from the group of all on-track students

enrolled in any CHEM1A section in a given year. For each randomly sampled section, I compute

the average pre-treatment characteristic (i.e. high school grade point average) and an empirical

p-value representing the share of simulated sections with an average pre-treatment characteristic

less than the observed average for the given section. If assignment is random, the distribution of

empirical p-values will be uniform since any p-value is equally likely to be observed. I obtain 55

p-values, one per year per pre-treatment trait. I test for uniformity of the empirical p-values by

16An explanation for the log transformation is presented in Section 3.
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year by trait using a Kolmogorov-Smirnov one-sample equality of distribution test.

Table 3 Panel A reports the results and shows that for all eleven years and the five pre-treatment

characteristics, the null hypothesis of random assignment is not rejected at the five percent level.

In summary, I find very little empirical evidence that on-track students are selectively enrolling

into sections by academic ability.

2.3.4 Enrollment Patterns of Late-Track Students

While on-track students face a no-priority registration policy, late-track students are able to selec-

tively enroll, and they do. In fact, as mentioned in Section 2.2, the enrollment patterns of late-track

students is exactly how variation in the share of on-track students arises. At the time of registration,

late-track students observe the time of day of the CHEM1A sections and the instructors.17 As such,

it is possible that they enroll based on start times and/or based on the reputation of the instructor’s

quality or difficulty. Although the dataset used in this analysis pre-dates websites that publicly

provide information on instructor quality (including listing grade distributions, syllabi etc.), some

of these students may have information on instructors from friends.

Through a series of section-level regressions which examine the correlation between observable

section characteristics and the share of late-track students, I show late-track students sort by time

of day, and not by instructor. Results for this exercise are presented in Table 4. The outcome

is the share of late track students in a given section. The first two columns examine observable

instructor characteristics. Column 1 shows very little correlation between the perceived difficulty

of the instructor and share of late-track students, where the measure of instructor difficulty is the

average grade assigned by a given instructor in all previous sections. There is also no evidence of

students sorting by the instructor’s gender (Column 2). Perhaps unsurprising, the margin by which

late-track students select into sections is time of day. There is a larger share of late-track students

in afternoon sections (Column 3).

Recall the identifying assumption, student characteristics that explain academic achievement

17They also observe the day of the week of the section, but there is no variation. All sections meet on the same days
for the same amount of time.
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must be uncorrelated with the ability composition of the class. That is, even though late-track

students selectively enroll based on section start time, there is little concern that this threatens the

causal interpretation of the results. First, all regressions include time of day fixed effects. Second,

similar to the indirect tests for selective enrollment conducted for on-track students, a balance test

for late-track students reported in Table 5 shows no sign that this group is sorting into sections

based on observable characteristics that are correlated with the ability composition of the section.

In addition, I employ the resampling exercise for the group of late-track students, which is reported

in Table 3 Panel B, and reject the null hypothesis of random assignment in only two of the 55 cases

at the 10 percent level of significance.18

Finally, to further alleviate concerns surrounding the enrollment patterns of late-track students,

because the are able to selectively enroll, I only include on-track students in the analysis.19 The

only way in which late-track students enter the analysis is through the ability composition variable

(the share of on-track students per section).

2.4 Data

Table 6 presents summary statistics for the sample, which includes only on-track students. From

1997-2007 there are 46 CHEM1A sections taught by 13 different instructors. The average section

size is 329 students, but there is little variation. Since CHEM1A is a highly demanded course,

sections typically fill to capacity. That is, section size is determined by the number of seats in the

lecture hall. A majority of the lectures are 300-370 students.20 On average, on-track students make

up 85 percent of each section; the minimum is 71 percent and the maximum is 96 percent.

The main outcome of interest is STEM completion, defined as graduating with a STEM major

from UCSB within five years. Among entering freshmen who take CHEM1A, the average STEM

18Recall from Section 2.2 that on-track students and late-track students enroll in CHEM1A at different times and
under different rules; which in fact is the very reason that there are differences in average ability across sections. As
such it is necessary to perform this simulation for the two groups separately. A simulation where the two groups are
considered together will, by construction, result in the rejection of random assignment.

19In a robustness check presented in Table A5, I show the results hold when late-track students are also included.
20The results are not sensitive to the exclusion of the 25 percent of lectures that are smaller than 300 students.
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completion rate is 53 percent for men and 45 percent for women. The average CHEM1A grade for

males is a 2.65 GPA (on a 4 point scale) and a 2.49 for women.

UCSB administrative data also include several socioeconomic measures: race, sex, high school

grade point average, SAT math and verbal scores, type of high school (public or private), parents’

highest education level, English proficiency and age. Limited information is also available re-

garding instructors and course times. These include an instructor’s sex and a unique instructor

identification number, as well as the year, day, and time of the section. These data are linked to

students.

3 Econometric Specification and Results

The primary specification is the following linear probability model:

Gitnd = α1 +β1Fi +β2lnOtnd +β3Fi ∗ lnOtnd +α2Ctnd +α3Xi +α3Mtnd +φt +ρn + εitnd (1)

The variable Gitnd denotes STEM major completion for on-track student i who takes CHEM1A

in year t with instructor n at time of day d; tnd uniquely identifies an individual section in a specific

year. F is a female indicator variable and Otnd is the number of on-track students in a specific

section. The log transformation allows one to interpret the on-track estimate as a percent change

and takes into account that a one student change is proportionately larger from a small base.21 The

coefficient β2 captures the effect of the number of on-track students per section on the outcome for

men. The coefficient on the interaction term F i ∗ lnOtnd is the differential effect of the number of

on-track students per section for women. Thus, for women the percentage-point change in STEM

graduation associated with a percent increase in the number of on-track students is β2 +β3.

Ctnd controls for several class level characteristics: the log of the total number of students

enrolled in a given section and the percent female. The section size variable includes the log of the

total number of on-track and late-track students enrolled in a given section. Xi is a vector of student

21In an alternative specification, I use percent of on-track students in a lecture as the measure of class composition
and obtain similar results, see Section 3.3.
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background characteristics including: race, if a student went to public high school, if English is

the only language spoken in the home, the highest level of education attainment of the parent with

the highest level of education, high school grade point average, SAT math and verbal scores, age,

and the student’s intended major at entry (hard sciences, Biology/Environmental Science, Social

Sciences, Humanities/Arts/interdiciplinary, and undeclared). M indicates that the section took

place in the morning (starting at 8 a.m. or 9 a.m.). Year fixed effects (φt) are included to control

flexibly for time trends in STEM completion. Since many instructors appear repeatedly, I include

instructor fixed effects (ρn) to control for time-invariant instructor differences. All standard errors

are clustered at the section level (instructor/year/time of day).

Fewer than 1 percent of on-track observations are missing SAT scores, and 0.5 percent of on-

track observations are missing high school grade point average. To deal with these missing values,

I impute values using the average of those with a reported value by sex. For example, for a female

missing the SAT math score, I fill in with the average SAT value of all female on-track students in

the sample. I also include a vector of indicator variables, one for each pretreatment variable, in all

regressions which takes on a value of one if the pretreatment variable is missing.

3.1 Main Results

Results from the main specification (Equation 1) – which estimates the differential impact of the

number of on-track students in a section for men and women – are reported in Table 7. Column

1 reports results for the full sample and shows that increasing the number of on-track students

in a class by 15 percent reduces the probability that a woman graduates with a STEM major by

3.1 percentage-points (see Column 1, panel B). Increasing the number of on-track students by 15

percent in the average section is equivalent to adding 44 more on-track students to a section with

281 on-track students, which is about one standard deviation. To give context to the magnitude of

the results, the average STEM graduation rate for women is 45 percent and 53 percent for men.

Thus, a 15 percent increase in the number of on-tracks student in a section decreases the STEM

graduation rate for an average woman from 45 percent to about 42 percent, which is a decrease
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of 6.6 percent. For men, Column 1 suggests that there is no statistically significant relationship

between the ability of the students in his CHEM1A section and the rate at which he persists in

STEM. Importantly, the interaction term – which estimates the differential effect of the number of

on-track students per section for women – is statistically different from zero (see Panel A, Row 2)

indicating that the effects for men and women are different from one another.

Table A3, a companion to Table 7, reports the main results with varying levels of controls. If

student sorting across sections is present and introducing bias, then including various controls –

e.g., fixed effects for instructor or time of day, or student level characteristics – should influence

the point estimates. However, the main effect – both gender differential effect and total effect –

changes very little across eight different specifications, further providing reassurance that student

selection into sections is not driving the results.

Column 1 is the most parsimonious specification and only includes year fixed effects, recall

student assignment is random within a year. Columns 2, 3 and 4 add to this parsimonious speci-

fication by including instructor fixed effects, time of day fixed effects, and class and student level

predetermined characteristics, respectively. Note that Column 4 reproduces the main specification

for reference. Columns 5-8 extend the main specification by adding various two-way fixed effects.

Column 5 adds instructor by year fixed effects to control for characteristics of an instructor

that differ across years but are common within a year. Column 6 adds instructor by time of day

fixed effects to the main specification, which controls for aspects of an instructor that are com-

mon to a certain time of the day. Two additional specifications are included to control for the

potential that female and male students may respond differentially to the time of the day of the

section or to a particular instructor. Column 7 adds instructor by student gender fixed effects to

the main specification, which controls for instructor characteristics that affect male and female

students differentially . Finally, Column 8 adds time of day by student gender fixed effects to the

main specification which rules out, for example, the possibility that women perform better in the

afternoon and thus are more likely to graduate with a degree in STEM.
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3.2 What Does the Estimated Composition Effect Include?

While the aim of this analysis is to understand the total effect of a student’s section-mates on that

student’s STEM outcomes, it is worth noting that in principle the total estimated composition effect

can embody three distinct effects: correlated effects, endogenous peer effects, and exogenous peer

effects (also known as contextual effects) (Manski, 1993). Correlated effects are present when

groups of individuals form based on common characteristics – i.e. ability – and, as a result, behave

similarly. This is often caused by students self-selecting into a group. Because, in my setting,

students load into sections in an as good as random way, the composition estimates are free of

correlated effects.

Endogenous peer influence is often described as the “reflection” problem and refers to the

empirical challenge of disentangle the effect of a group on an individual’s outcome from the effect

that an individual has on the group (Moffitt et al., 2001; Sacerdote, 2001). The two are often

determined simultaneously as peer interactions are reciprocal in nature. In an attempt to mitigate

reflection, I follow a strategy common to this literature; I control for previous peer achievement

(Carrell et al., 2009, 2013; Hanushek et al., 2003).

Lastly, contextual effects capture the effect of a student’s classmate’s predetermined charac-

terises – high school grade point average, SAT scores etc. – on her own outcomes. It is often the

goal of the empiricist to isolate the exogenous effect net of the other two effects, but in this study

I am interested in estimating the total composition effect. The presence of an endogenous effect

does not undermine the empirical findings.22

A final concern is that the results are an artifact of a mechanical relationship between the

measure of own and peer ability as described in Angrist (2014). A mechanical relationship stems

from measurement error and is distinct from selection bias. In this study, however, because I show

assignment of students to sections is as good as random, any bias stemming from measurement

error will only attenuate the composition estimates. That is, the estimated negative composition

22If one believes that endogenous effects are present, and assuming that both the exogenous and endogenous effects
are negative, my estimate of the “total effect” will overstate the exogenous effect. That is, the estimate will be inflated
by a social multiplier, and be more negative than the true exogenous effect.
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effect is an upper bound; the true effect may be even more negative (Feld and Zölitz, 2017).

3.3 Sensitively and Heterogeneity Analysis

There are two sections in the sample that are substantially smaller than the rest having fewer than

100 students. Although the simulation presented in Table 3 reveals that students are not sorting

into sections based on observable characteristics, investigating these small sections is warranted.

More than likely these sections were added last minute to meet a larger than expected CHEM1A

demand, but the data do not allow one to observe added sections.23

If these small sections are added, the on-track students assigned to them have the greatest

potential to be non-representative. For instance, the small percent of on-track students who do

not attend a summer orientation session and also enroll in CHEM1A (which is on average five

percent of an incoming freshman class) are most likely assigned to an add-on lecture during the

first week of school. One would expect this non-summer orientation attending group of students

to be less advantaged, thereby dampening the estimated on-track student effect found in the main

specification. 24

Column 2 of Table 7 reports the estimates for the subsample which excludes sections with

fewer than 100 students; variation in the share of on-track students per section ranges from 75

to 96 percent 25 Results for this subsample indicate that small sections are not driving the main

findings. In fact, the magnitude of the estimated composition effects for women and men are not

statistically different from the estimated effects using the whole sample.

The results are robust to an alternative measure of average class ability. Table A4 reports the

results using the percent of on-track students in a section as the measure of the ability composition

instead of the log of the number of on-track students. The main difference between these two mea-

23 Although many years the Chemistry Department accurately estimates the demand for CHEM1A, there are cases
where they add an additional lecture the week before the fall term begins.

24Non-orientation attending students are likely less advantaged because summer orientation is an additional cost.
According to UCSB office of Orientation Programs and Parent Services, the most common reason students do not
attend orientation is due to summer employment.

25A balancing test for the subsample is statistically the same as the balancing test for the main sample. This table is
available upon request.
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sures is that percent on-track assumes a constant marginal effect regardless of the base. Although

somewhat noisier, the estimated effects for men and women are quite similar in magnitude; the

interaction term is just shy of statistical significance at the 10 percent level. I also estimate Equa-

tion 1 as a probit model rather than a linear probability model and obtain similar results. In a final

robustness check, I expand the sample to include late-track and on-track students. These results

are presented in Table A5 and are quite similar to those found in the original sample.

Next, understanding which group of students is driving the main result is important for devel-

oping and implementing interventions. Columns 3-5 of Table 7 report results disaggregated by

SAT math score. The effect is strongest for women in the bottom third of the SAT math distribu-

tion. A 15 percent increase in the number of on-track students in a class reduces the probability

by 5.7 percentage-points that a women in this SAT math group completes college with a degree in

STEM, and this effect is statistically different from the estimated effects in the other two SAT cat-

egories (Columns 4 and 5). Consistent with the main finding, the men in all subsamples, including

those in the bottom third of the SAT math distribution, appear to be unaffected by the classroom

composition.

It is intuitive that women in the lower part of the math ability distribution are the group most

affected by classroom composition since they are the group most at risk of dropping out of STEM.

In a working paper, Astorne-Figari and Speer (2017) document a similar pattern. They find that

women switch out of relatively more competitive majors, while men do not, and this result is par-

ticularly pronounced at the lower end of the ability distribution. They also show that this gender

switching gap is not reduced by controlling for grades, something I document as well (see Sec-

tion 3.4). Alternatively, our results oppose the findings in Carrell et al. (2010). They find that

the group influenced by STEM interventions are women at the top of the SAT math distribution.

In particular, they document that women in the top 25 percent of the SAT math distribution with

female STEM instructors are more likely to graduate with a STEM major.

One might wonder if the results truly are a gender effect. It is possible that I am capturing

an underrepresented minority effect or merely picking up the fact that all students at the bottom
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end of the SAT math distribution are less likely to graduate with a degree in STEM. Columns 1

and 2 of Table 8 report results from the specifications outlined in Equations 3 and 4 respectively.

These models, which are extensions of Equation 1, include a triple interaction term allowing one

to disentangle differences in the ability composition effect across gender and race (Column 1), as

well as gender and position in the SAT math distribution (Column 2).

Gitnd = α1 +β1Fi +β2lnOtnd +β3URMi +β4Fi ∗URMi +β5lnOtnd ∗URMi +β6Fi ∗ lnOtnd+ (2)

β7Fi ∗URMi ∗ lnOi +α2Ctnd +α3Xi +α3Mtnd +φt +ρn + εitnd

Gitnd = α1 +β1Fi +β2lnOtnd +β3Lowi +β4Fi ∗Lowi +β5lnOtnd ∗Lowi +β6Fi ∗ lnOtnd+ (3)

β7Fi ∗Lowi ∗ lnOi +α2Ctnd +α3Xi +α3Mtnd +φt +ρn + εitnd

URMi denotes whether a student is an underrepresented minority (black, Hispanic, American

Indian or Filipino) and Lowi indicates whether a student falls in the bottom third of the SAT math

distribution for the sample in a given year. All other variables are as defined in Equation 1. Col-

umn 1 shows that all women, regardless of race, have STEM persistence rates that are negatively

affected by the number of on-track students in her CHEM1A class. As reported in Column 1

Panel B, URM and non-URM women experience a 3.0 percentage-point decline in STEM persis-

tence as a result of an increased number of on-track students. Again, there is no detectable class

composition effect for men, URM or non-URM.

Results presented in Table 8 Column 2 further support a gender story. These results show that

only women (and not men) in the bottom third of the SAT math distribution for the sample have

STEM persistence rates that are affected. In fact, women in this group are 4.0 percentage-points

less likely to graduate in STEM as a result of a 15 percent increase in the number of on-track

students in a class. The results for the women are statistically different from zero and statistically

different from men in this same SAT math group.

Gitnd = α1 +β1Fi +β2lnOtnd +β3Bi +β4Fi ∗Bi +β5lnOtnd ∗Bi +β6Fi ∗ lnOtnd+ (4)

β7Fi ∗Lowi ∗ lnOi +α2Ctnd +α3Xi +α3Mi +φt +ρi + εitnd
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Finally, socioeconomic status may also play a role in one’s willingness to leave STEM when

placed in a lecture with a higher share of on-track students. I use a similar triple difference speci-

fication – as outlined in Equation 4 – and examine the differential effect of the ability composition

on STEM persistence by gender and by parent’s level of education. Bi indicates if a student has at

least one parent with a bachelor’s degree. Results presented in Column 3 of Table 8 show that all

women, regardless of whether her parent is a college graduate, have an increased probability of ex-

iting STEM. Consistent with all other specifications, the persistence rate for men in all subgroups

seems to be statistically unrelated to the composition of the class. Together, these findings provide

strong evidence that women in the bottom third of the math ability distribution are the group most

affected by the ability of their classmates. There is no evidence to support the conjecture that it is

merely reflecting minority status, being in the bottom of the ability distribution, or socioeconomic

status.26

3.4 Grades as a Possible Mechanism

These reported findings raise the question: Why are women less likely to graduate with a STEM

degree if their first experience with STEM is in a setting with higher ability classmates, and why

are men unaffected by this factor? While little is known regarding post-secondary classroom com-

position effects and student outcomes in general, less is known about the mechanisms at work, and

in particular why composition matters more for women.

One possible candidate is grades. Several studies in economics find that women are more

responsive to grades than men, and as a result exit STEM majors (Rask and Tiefenthaler, 2008;

Ost, 2010).27 It is also likely the class ability composition influences the grade a student earns in

this class. Students who randomly end up in sections with more high ability classmates will receive

lower grades relative to their counterpart (those in lectures with fewer on-track students) if there is

26In an additional unreported analysis, I further investigate if the gender composition of the late-track group plays a
role in explaining female’s stem persistence, and find no conclusive results.

27The average grade in STEM courses is much lower than humanities, social sciences, arts and interdisciplinary
courses.
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a similar grading curve in each class. For instance, suppose that there are two CHEM1A sections

with equal enrollment in a given fall quarter and one has more on-track students than the other.

Relying on the fact that sections with more on-track students are overall higher ability (Table 1), a

student receiving a score of 77 percent in the section with more on-track students will be assigned

a lower final letter grade than if she were in a section with fewer on-track students.

This scenario is likely since all CHEM1A instructors assign final course grades based on a

similar curve. The curve is applied within a section and the typical distribution is 20 percent A

grades, 30 percent B grades, and 30 percent C grades.28 Once enrolled in the course, from the

syllabus students can observe that there is a curve imposed in each section and that the final course

grade is largely determined by performance on exams. The final grade breakdown is usually 40

percent final exam, 20 percent midterm 1, 20 percent midterm 2, 10 percent quizzes, and 10 percent

homework. Quizzes are typically multiple choice and midterms and the final are a combination of

multiple choice and short answer. Instructors write and grade their own exams; that is, exams are

not common across sections within the same fall quarter.

If grades in the introductory course are driving this longer-run negative effect on STEM com-

pletion, then controlling for CHEM1A grade in the main specification (Equation 1) should diminish

the composition estimates. This does not seem to be the case. Table 9 reports such estimates and

shows that the effect remains despite controlling for grade. It appears that men also experience

a negative composition effect once controlling for CHEM1A grade, but importantly the gender

differential effect persists suggesting that women are still more negatively affected. In summary,

the results presented in Table 9 suggest that grades are likely not the main driver underling the

negative composition effect.

There are, however, various other ways in which the ability composition may discourage

women that are consistent with my findings. One possibility is that the composition of the class

could affect students’ self-perception about their immediate and future success in the major. Pre-

28It is possible for instructors to adjust the curve up or down by a few percentage points depending on the section
(i.e. 22 percent earn an A grade, 28 percent earn a B grade etc.). Nevertheless, “good” grades remain scarce and
students are aware of this from the onset.
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sumably, all students enter the initial course with an expectation about how they will do. Through-

out the course they learn about their relative standing and update beliefs about themselves accord-

ingly. Individuals in sections with relatively higher ability classmates may adjust these beliefs

differently compared to those who are not. For example, Pop-Eleches and Urquiola (2013) show

that students who just make it into better high schools receive better exam scores but also report

feeling marginalized and relatively weaker compared to students who are placed in classes with

lower ability classmates. To the extent that women’s self-perception about their future success is

more negatively affected by the ability of those around them, it could explain their much lower

retention rate. In a related vein, if women are more risk averse, then the marginal ones may switch

to majors where they perceive having a higher chance of “making it” while marginal men gamble

by staying in STEM. Consistent with this idea, Kuziemko et al. (2014) show that men are more

likely to gamble to avoid low rank whereas women accept it.29

Along these lines, I show that women still graduate but that they respond to the composition

of their introductory STEM course by switching into majors that are on average lower paying,

less quantitative, and arguably less competitive.30 Table 10, Column 1 reports that increasing the

number of on-track students in a class by 15 percent leads to a 3.2 percentage-point increase in

the probability that a woman graduates with a humanities, social sciences, art, or interdisciplinary

major.31

4 Conclusion

It has been well documented that women are less likely than men to persist in STEM majors and

careers. This study targets a unique group of students, those taking General Chemistry in their first

quarter of college, to better understand how one’s first collegiate experience in STEM explains

29Although data for this study comes from the laboratory and manipulates an individual’s rank in the wealth distri-
bution, it is reasonable that the detected behavioral response extends to a classroom ability distribution.

30Appendix Table A6 outlines by sex the percent of students in each major category at entry and at graduation.
31I get similar results when I exclude Economics (Econ, Econ-Math, and Econ-Accounting) and Psychology from

this group.
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STEM major graduation rates. Relying on data containing roughly 12,000 first year university

students from 11 entering cohorts between 1997-2007, I estimate the causal relationship between

the ability of one’s classmates in a required STEM major course and a student’s STEM major

completion.

In summary, I find women who are assigned to a STEM lecture with higher ability peers at the

start of their university career are less likely to persist in STEM while men’s persistence behavior

is unaffected. I rule out the possibility that women earn lower grades in classes with higher ability

classmates and as such are less likely to persist.

This study is the first to provide an analysis of the relationship between classroom composi-

tion and STEM degree completion in higher education, and to document the differential response

by gender. It is also among the first to examine the effects of classroom composition in higher

education. Broadly, the results from this study suggests that women’s longer run STEM persis-

tence is affected by her experience in the gateway course, and, in particular, that the classroom

ability composition plays a crucial role. By identifying this new channel through which women

opt out of STEM, the estimates presented in this paper provide potentially important information

to policymakers attempting to bolster the participation of women in STEM fields.
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Table 1: On-Tracks are Relatively Higher Ability than Late-Tracks

Transfers Late-Track On-Track Diff. (3) -(2)
(1) (2) (3) (4)

Predetermined Characteristics
Women 0.46 0.52 0.49 -.03**

(0.50) (0.50) (0.50) (0.01)
URM (underrepresented minority) 0.33 0.32 0.32 0.00

(0.47) (0.47) (0.47) (0.01 )
High school G.P.A – 3.68 3.75 0.06***

(0.35) (0.32) ( 0.01)
SAT math score 577.67 604.34 612.74 8.4**

(81.22) (80.95) (80.84) ( 2.25 )
SAT verbal score 544.40 575.91 569.58 -6.33**

(84.04) (83.66) (84.59) ( 2.33 )
Public high school 0.94 0.86 0.85 -0.01

(0.24) (0.35) (0.36) ( 0.01 )
English spoken in home 0.67 0.69 0.67 -0.02

(0.47) (0.46) (0.47) ( 0.01 )
No parent college grad. 0.38 0.29 0.33 0.04 **

(0.48) (0.46) (0.47) ( 0.01 )
Outcomes
Graduate with STEM major 0.45 0.44 0.49 0.05**

(0.50) (0.50) (0.50) (0.01 )
Graduate 0.76 0.82 0.81 -0.01

(0.43) (0.38) (0.39) ( 0.01 )
CHEM1A grade 2.05 2.26 2.57 0.31**

(1.16) (1.11) (0.93) (0 .03)
Took follow-on (CHEM1B) 0.65 0.63 0.82 0.19**

(0.48) (0.48) (0.38) ( 0.01 )
Grade in follow-on (CHEM1B) 2.31 2.53 2.58 0.05

(0.96) (0.97) (0.87) ( 0.03 )
Observations 621 1,935 12,230

Notes: On-track students are enrolled in the first quarter of General Chemistry (CHEM1A) in the fall quarter of their freshman
year at UCSB from 1997 to 2007. Late-track students are enrolled in CHEM1A during this time frame but are taking the course as
an upperclassman or transfer student. URM stands for underrepresented minorities and includes all race categories except white,
Asian and Indian. Note that only 159 of the 621 transfers report SAT scores. High school GPA is not reported for transfers because
the data only contain their previous college GPA and not their high school GPA. Level of significance is indicated as follows: **
p<0.01, * p<0.05, + p<0.1. Standard deviations are in parentheses.
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Table 2: Are On-Track Students Selectively Enrolling Based on Ability Composition?

URM SAT Math SAT Verbal H.S. GPA Parent is College Grad
(1) (2) (3) (4) (5)

Panel A: Point Estimates
Ln(no. of on-track) -0.119+ 7.372 19.740 0.063 0.084

(0.059) (8.062) (12.210) (0.030) (0.073)
Ln(no. of on-track) X fem. 0.057 5.852 -1.788 -0.016 0.042

(0.078) (4.634) (5.250) (0.036) (0.075)

Panel B: Estimated effects in
%-pts. associated with a 15%
increase in no. of on-track
The differential effect 0.80 0.82 -0.25 0.00 0.01
Women -0.87 1.85 2.51 0.01+ 0.02
Men -1.70+ 1.03 2.76 0.01+ 0.01
Observations 12,122 12,036 12,036 12,054 12,122

Notes: Each column is a separate regression and also includes year fixed effects as well as a female indicator. On-track students are those enrolled in the first
quarter of General Chemistry (CHEM1A) in the fall quarter of their freshman year at UCSB between the years 1997 and 2007. This sample excludes two small
classes with enrollment less than 100. URM stands for underrepresented minorities and includes all race categories except white, Asian and Indian. Level of
significance is indicated as follows: ** p<0.01, * p<0.05, + p<0.1. Robust standard errors are in parentheses.
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Table 3: Randomization Check for Section Assignment

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Panel A: On-Track Students
H.S. GPA
K-S Test P-values 0.274 0.17 0.284 0.277 0.281 0.273 0.274 0.283 0.284 0.28 0.178
SAT math
K-S Test P-values 0.273 0.166 0.287 0.272 0.277 0.266 0.28 0.286 0.28 0.266 0.176
Sat verbal
K-S Test P-values 0.275 0.167 0.281 0.283 0.268 0.275 0.274 0.282 0.263 0.266 0.173
Col. grad parent
K-S Test P-values 0.281 0.174 0.27 0.284 0.274 0.277 0.283 0.279 0.272 0.273 0.171
URM
K-S Test P-values 0.266 0.177 0.278 0.275 0.273 0.271 0.278 0.284 0.274 0.277 0.165
Panel B: Late-Track Students
H.S. GPA
K-S Test P-values 0.26 0.164 0.272 0.281 0.274 0.267 0.267 0.281 0.26 0.186 0.169
SAT math
K-S Test P-values 0.273 0.175 0.209 0.23 0.244 0.244 0.25 0.131 0.259 0.273 0.10
Sat verbal
K-S Test P-values 0.218 0.171 0.269 0.233 0.216 0.192 0.256 0.193 0.208 0.053 0.146
Col. grad parent
K-S Test P-values 0.287 0.174 0.29 0.271 0.296 0.285 0.266 0.273 0.27 0.288 0.16
URM
K-S Test P-values 0.272 0.172 0.283 0.301 0.275 0.271 0.274 0.278 0.273 0.285 0.168

Note: The reported P-values correspond to a Kolmogorov-Smirnov test of uniformity. The values indicate that the null hypothesis of random assignment is not rejected at any
conventional level of statistical significance for on-track students. It is only rejected at the 10% level in 2 of the 55 cases for late-track students. Both set of results suggest there is
little concern of student sorting across sections.
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Table 4: How are Late-Track Students Selectively
Enrolling?

Outcome: Share Late-Track
(1) (2) (3)

Ave. grade [n-1] 0.012
(0.048)

Prof. female 0.013
(0.017)

Late morning -0.0025
(0.015)

Afternoon 0.043*
(0.022)

Year FE X X X
Observations 46 46 46

Note: Each column is a separate regression and also includes year fixed
effects. Data are collapsed to the section level. Each regression in-
cludes 46 observations. Level of significance is indicated as follows: **
p<0.01, * p<0.05. + p<0.1. Robust standard errors are in parentheses.
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Table 5: Are Late-Track Students Selectively Enrolling Based on Ability Composition?

URM SAT Math SAT Verbal H.S. GPA Parent is College Grad
(1) (2) (3) (4) (5)

Panel A: Point Estimates
Ln(no. of on-track) -0.097 -11.890 7.272 0.285 0.0613

(0.092) (20.700) (21.680) (0.223) (0.094)
Ln(no. of on-track) X fem. -0.047 18.470 12.710 0.013 0.062

(0.125) (26.220) (28.850) (0.104) (0.278)

Panel B: Estimated effects in
%-pts. associated with a 15%
increase in no. of on-track
The differential effect -0.65 2.59 1.79 0.18 0.87
Women -2.00 0.92 2.80 4.2 1.72
Men -1.35 -1.66 1.02 4.0 0.86
Observations 1,902 1,416 1,416 1,863 1,902

Notes: Each column is a separate regression and also includes year fixed effects. On-track students are those enrolled in the first quarter of General Chemistry
(CHEM1A) in the fall quarter of their freshman year at UCSB between the years 1997 and 2007. This sample excludes two small classes with enrollment less
than 100. URM stands for underrepresented minorities and includes all race categories except white, Asian and Indian. Level of significance is indicated as
follows: ** p<0.01, * p<0.05. + p<0.1. Robust standard errors are in parentheses.
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Table 6: Summary Statistics (sample includes on-tracks only)

Women Men
(1) (2)

Classroom Characteristics
% on-track in a lecture 0.85 0.85

(0.05) (0.05)
CHEM1A lecture size 329.37 328.53

(46.73) (47.37)
Student Background Characteristics
URM (underrepresented minority) 0.34 0.31

(0.47) (0.46)
High school grade point average 3.80 3.70

(0.31) (0.33)
SAT math score 587.59 636.41

(78.16) (75.49)
SAT verbal score 564.88 573.97

(82.63) (85.60)
Attended public high school 0.86 0.84

(0.35) (0.37)
English is only language spoken in home 0.69 0.65

(0.46) (0.48)
No parent graduated from college 0.36 0.29

(0.48) (0.46)
Outcomes
Graduate with STEM major 0.45 0.53

(0.50) (0.50)
Graduate 0.82 0.80

(0.39) (0.40)
CHEM1A grade 2.49 2.65

(0.95) (0.91)
Took follow-on course (CHEM1B) 0.80 0.85

(0.40) (0.36)
Grade in follow-on course (CHEM1B) 2.58 2.59

(0.87) (0.87)
Observations 5,942 6,288

Notes: The sample includes only on-track students, those enrolled in the first quarter of
General Chemistry (CHEM1A) in the fall quarter of their freshman year at UCSB between
the years 1997 and 2007. URM stands for underrepresented minorities and includes all race
categories except white, Asian and Indian. Standard deviations are reported in parentheses.
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Table 7: The Effect of the Number of On-Track Students on STEM Major Completion

Full Sample Lectures > 100 Bottom 1/3 SAT Math Middle 1/3 SAT Math Top 1/3 SAT Math
(1) (2) (3) (4) (5)

Panel A: Point Estimates
Ln(no. of on-track) -0.112 -0.037 -0.232 -0.71 -0.057

(0.106) (0.103) (0.171) (0.299) (0.138)
Ln(no. of on-track) X fem. -0.112** -0.137** -0.166* 0.010 -0.055

(0.030) (0.045) (0.067) (0.061) (0.077)
Instructor, year, time of day FE X X X X X
Student & class controls X X X X X
Panel B: Estimated effects in
%-pts. associated with a 15%
increase in no. of on-track
Women -3.14* -2.40+ -5.70* -0.90 -1.60
Men -1.57 -0.50 -3.20 -1.00 -0.80
Observations 12,230 12,122 4,206 3,438 4,586

Note: Each column is a separate specification. Controls include percent female in a class, log class size, year and instructor fixed effects, whether the lecture was held in the morning, a vector of
student background characteristics, and a student’s declared major at entry. Student background characteristics include: gender, race (black, Hispanic, Asian, American Indian, Filipino, Indian and
white is the omitted group), if a student went to public high school, if English is the only language spoken in the home, the highest level of education attainment of the parent with the highest level of
education, high school grade point average, SAT math and verbal scores and age. The student’s intended major at entry is coded into five categories: hard sciences, Biology/Environmental Science,
Social Sciences, Humanities/Arts/interdiciplinary, and undeclared. Clustered standard errors are in parentheses , ** p<0.01, * p<0.05, + p<0.1. Clusters are by CHEM1A section. A 15% increase in
number of on-track students in a class is the equivalent of increasing the number of on-track students by about 1 standard deviation (44 students). URM stands for underrepresented minorities and
includes all race categories except white, Asian and Indian.
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Table 8: Heterogeneity Analysis – STEM Major Completion for Various Subgroups

URM Effect? Low Ability Effect? Low SES Effect?
(1) (2) (3)

Panel A: Point Estimates
Ln(no. of on-track) -0.096 -0.116 -0.143

(0.114) (0.106) (0.119)
Ln(no. of on-track) X fem. -0.125* 0.802+ -0.087

(0.060) (0.472) (0.070)
Ln(no. of on-track) X URM -0.050

(0.070)
Ln(no. of on-track) X fem. X URM 0.033

(0.101)
Ln(no. of on-track)X bottom 1/3 0.013

(0.064)
Ln(no. of on-track) X fem. X bottom 1/3 -0.144+

(0.084)
Ln(no. of on-track) X parent col. grad 0.054

(0.063)
Ln(no. of on-track) X fem. X parent col. grad -0.042

(0.087)

Panel B: Estimated effects in
%-pts. associated with a 15%
increase in no. of on-track
Non-URM – women -3.10*
Non-URM – men -1.30
URM – women -3.30*
URM – men -2.00
Bottom 1/3 – women -4.00*
Bottom 1/3 – men -1.40
Top 2/3 – women -2.00
Top 2/3 – men -1.60
Col. grad parent – women -3.00*
Col. grad parent – men -1.20
No col. grad parent – women -3.20*
No col. grad parent – men -2.10
Observations 12,230 12,230 12,230

Note: Each column is a separate specification. The Column 1 regression also includes a dummy for URM and an interaction term between URM and woman.
URM stands for underrepresented minorities and includes all race categories except white, Asian and Indian. The Column 2 regression also includes a
dummy for being in the bottom 1/3 of the SAT math distribution and the interaction between being in the bottom and a woman. The Column 3 regression
also includes a dummy for having at least one parent with a college degree and the interaction between being that dummy and woman. Additionally, all three
regressions include controls for percent female in a class, class size, year and instructor fixed effects, whether the lecture was held in the morning, a vector
of student background characteristics, and a student’s declared major at entry. Student background characteristics include: gender, race (black, Hispanic,
Asian, American Indian, Filipino, Indian and white is the omitted group), if a student went to public high school, if English is the only language spoken in
the home, the highest level of education attainment of the parent with the highest level of education, high school grade point average, SAT math and verbal
scores and age. Clustered standard errors are in parentheses , ** p<0.01, * p<0.05, + p<0.1. Clusters are by CHEM1A section. A 15% increase in number
of on-track students in a class is the equivalent of increasing the number of on-track students by about 1 standard deviation (44 students).
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Table 9: STEM Major Completion – Controls for CHEM1A Grade

Full Sample Bottom 1/3 SAT Math Middle 1/3 SAT Math Top 1/3 SAT Math
(1) (2) (3) (4)

Panel A: Point Estimates
Ln(no. of on-track) -0.256+ -0.467** -0.231 -0.184

(0.140) (0.171) (0.302) (0.134)
Ln(no. of on-track) X fem. -0.117** -0.152* 0.0267 -0.0754

(0.034) (0.061) (0.055) (0.079)
CHEM1A Grade 0.169** 0.171** 0.178** 0.167**

(0.005) (0.009) (0.009) (0.009)
Instructor, year, time of day FE X X X X
Student & class controls X X X X
Panel B: Estimated effects in
%-pts. associated with a 15%
increase in no. of on-track
Women -5.20** -8.67** -2.85 -3.64+
Men -3.60+ -6.53** -3.23 -2.58
Observations 12,230 4,206 3,438 4,586

Note: Each column is a separate specification. Controls include percent female in a class, log class size, year and instructor fixed effects, whether the lecture was held in the
morning, a vector of student background characteristics, and a student’s declared major at entry. Student background characteristics include: gender, race (black, Hispanic,
Asian, American Indian, Filipino, Indian and white is the omitted group), if a student went to public high school, if English is the only language spoken in the home, the
highest level of education attainment of the parent with the highest level of education, high school grade point average, SAT math and verbal scores and age. Clustered
standard errors are in parentheses , ** p<0.01, * p<0.05, + p<0.1. Clusters are by CHEM1A section. A 15% increase in number of on-track students in a class is the equivalent
of increasing the number of on-track students by about 1 standard deviation (44 students). URM stands for underrepresented minorities and includes all race categories except
white, Asian and Indian.
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Table 10: Where are the Women Going?

Graduate in Non-STEM Graduate
(1) (2)

Panel A: Point Estimates
Ln(no. of on-track) 1.22 -0.035

(0.099) (0.113)
Ln(no. of on-track) X fem. 0.107** -0.074+

(0.030) (0.038)
Instructor, year, time of day FE X X
Student & class controls X X
Panel B: Estimated effects in
%-pts. associated with a 15%
increase in no. of on-track
Women 3.20* -0.50
Men 1.70 -1.50
Observations 12,230 12,230

Note: Each column is a separate specification. Controls include percent female in a class, log class
size, year and instructor fixed effects, whether the lecture was held in the morning, a vector of student
background characteristics, and a student’s declared major at entry. Student background characteristics
include: gender, race (black, Hispanic, Asian, American Indian, Filipino, Indian and white is the omitted
group), if a student went to public high school, if English is the only language spoken in the home, the
highest level of education attainment of the parent with the highest level of education, high school grade
point average, SAT math and verbal scores and age. Clustered standard errors are in parentheses , **
p<0.01, * p<0.05, + p<0.1. Clusters are by CHEM1A section. A 15% increase in number of on-track
students in a class is the equivalent of increasing the number of on-track students by about 1 standard
deviation (44 students). URM stands for underrepresented minorities and includes all race categories
except white, Asian and Indian.
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Appendix

Table A1: STEM Majors

Major Requires CHEM1A STEM Majors
X Biology
X Biochemistry
X Biopsychology
X Chemistry
X Engineering
X Computer Engineering

Computer Science
X Earth Science
X Ecology
X Environmental Science

Mathematics
Statistics

X Geophysics
X Hydrology
X Zoology
X Pharmacology
X Physics
X Physiology
X Physical Geography
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Table A2: Balance Test – Orientation Attendees vs. Non-Attendees

Summer Orientation Group Did Not Attend Orientation Diff. (1) - (2)
(1) (2) (3)

Student Background and Class Characteristics
No. On-track is above median 0.48 0.46 0.02

(0.01) (0.04) (0.04)
Lecture is at 8 or 9 a.m. 0.35 0.39 -0.04

(0.01) (0.04) (0.04)
Female 0.49 0.52 -0.03

(0.01) (0.04) (0.04)
URM (underrepresented minority) 0.38 0.48 -0.10*

(0.01) (0.04) (0.04)
High school GPA is above median 0.51 0.46 -0.05

(0.01) (0.04) (0.04)
SAT math score is above median 0.51 0.51 0.00

(0.01) (0.04) (0.04)
SAT verbal score is above median 0.54 0.48 0.06

(0.01) (0.04) (0.04)
Attended public high school 0.92 0.93 -0.01

(0.01) (0.02) (0.02)
English is only language spoken in home 0.54 0.48 0.06

(0.01) (0.04) (0.04)
No parent graduated from college 0.37 0.43 -0.05

(0.01) (0.04) (0.04)
Observations 1,624 178 1,802

Note: URM stands for underrepresented minorities and includes all race categories except white, Asian and Indian. Column 3 uses an asterisk system to denote whether the differences in
means are significant. Level of significance is indicated as follows: ** p<0.01, * p<0.05, + p<0.1. Standard deviations are in parentheses. The sample includes only those students enrolled
in the first quarter of General Chemistry (CHEM1A) in the fall quarter of their freshman year at UCSB for the year 2013.
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Table A3: The Effect of the Number of On-Track Students on STEM Major Completion Including Various Controls

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Point Estimates
Ln(no. of on-track) -0.262* -0.347* -0.211* -0.112 -0.283* -0.183+ -0.126 -0.031

(0.128) (0.138) (0.102) (0.106) (0.120) (0.101) (0.105) (0.105)
Ln(no. of on-track) X fem. -0.085* -0.098** -0.103** -0.112** -0.114** -0.113** -0.075* -0.152**

(0.034)) (0.029) (0.029) (0.030) (0.030) (0.030) (0.034) (0.035)
Year FE X X X X X X X
Instructor FE X X X X
Time of day FE X X X X
Student & class controls X X X X X
Instructor X year FE X
Instructor X time of day FE X
Instructor X student gender X
Time of Day X student gender X
Panel B: Estimated effects in
%-pts. associated with a 15%
increase in no. of on-track
Women -4.85** -6.23** -4.40** -3.14* -5.56** -4.14** -2.81+ -2.58+
Men -3.66* -4.86** -2.95+ -1.57 -3.96** -2.56+ -1.76 -0.44
Observations 12,230 12,230 12,230 12,230 12,230 12,230 12,230 12,230

Note: Each column is a separate specification. Controls include percent female in a class, log class size, year and instructor fixed effects, whether the lecture was held in the morning,
a vector of student background characteristics, and a student’s declared major at entry. Student background characteristics include: gender, race (black, Hispanic, Asian, American
Indian, Filipino, Indian and white is the omitted group), if a student went to public high school, if English is the only language spoken in the home, the highest level of education
attainment of the parent with the highest level of education, high school grade point average, SAT math and verbal scores and age. Clustered standard errors are in parentheses ,
** p<0.01, * p<0.05, + p<0.1. Clusters are by CHEM1A section. A 15% increase in number of on-track students in a class is the equivalent of increasing the number of on-track
students by about 1 standard deviation (44 students). URM stands for underrepresented minorities and includes all race categories except white, Asian and Indian.
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Table A4: The Effect of Percent On-Track in a Class on STEM Major Completion

Full Sample Lectures > 100 Bottom 1/3 SAT Math Middle 1/3 SAT Math Top 1/3 SAT Math
(1) (2) (3) (4) (5)

Panel A: Point Estimates
Percent On-Track -0.050 -0.030 -0.204 0.188 -0.181

(0.163) (0.171) (0.287) (0.263) (0.279)
Percent On-Track X fem. -0.272 -0.232 -0.291 -0.572+ 0.353

(0.189) (0.199) (0.333) (0.299) (0.322)
Instructor, year, time of day FE X X X X X
Student & class controls X X X X X
Panel B: Estimated effects in
%-pts. associated with a 15%
increase in share of on-track
Women -4.83* -3.93+ -7.43* -5.75 2.58
Men -0.75 -0.44 -3.07 2.83 -2.80
Observations 12,230 12,122 4,206 3,438 4,586

Note: Each column is a separate specification. Controls include percent female in a class, year and instructor fixed effects, whether the lecture was held in the morning, a vector of student background
characteristics, and a student’s declared major at entry. Student background characteristics include: gender, race (black, Hispanic, Asian, American Indian, Filipino, Indian and white is the omitted
group), if a student went to public high school, if English is the only language spoken in the home, the highest level of education attainment of the parent with the highest level of education, high
school grade point average, SAT math and verbal scores and age. Clustered standard errors are in parentheses , ** p<0.01, * p<0.05, + p<0.1. Clusters are by CHEM1A section. URM stands for
underrepresented minorities and includes all race categories except white, Asian and Indian.
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Table A5: The Effect of the Number of On-Track Students on STEM Major Completion for Various Groups

Late-Track Late-Track & On-Track Late-Track & On-Track
Bottom 1/3 Middle 1/3 Top 1/3

(1) (2) (3) (4) (5)
Panel A: Point Estimates
Ln(no. of on-track) -0.279 -0.143 -0.206 -0.135 -0.081

(0.190) (0.088) (0.152) (0.291) (0.133)
Ln(no. of on-track) X fem. -0.150+ -0.117** -0.162** -0.013 -0.115+

(0.083) (0.031) (0.048) (0.076) (0.065)
Instructor, year, time of day FE X X X X X
Student & class controls X X X X X
Panel B: Estimated effects in
%-pts. associated with a 15%
increase in no. of on-track
Women -6.00* -3.64** -5.15* -2.07 -2.74
Men -3.91 -2.00 -2.89 -1.90 -1.13
Observations 1,935 14,165 4,770 3,389 5,556

Note: Each column is a separate specification. “Bottom 1/3” refers to the bottom 1/3 of the SAT math distribution. “Middle 1/3” and “Top 1/3” refer to the
middle 1/3 and top 1/3 of the SAT math distribution for the class respectively. Columns 3-5 include both on-track and late-track students. Controls include percent
female in a class, log class size, year and instructor fixed effects, whether the lecture was held in the morning, a vector of student background characteristics, and
a student’s declared major at entry. Student background characteristics include: gender, race (black, Hispanic, Asian, American Indian, Filipino, Indian and white
is the omitted group), if a student went to public high school, if English is the only language spoken in the home, the highest level of education attainment of the
parent with the highest level of education, high school grade point average, SAT math and verbal scores and age. Clustered standard errors are in parentheses , **
p<0.01, * p<0.05, + p<0.1. Clusters are by CHEM1A section. A 15% increase in number of on-track students in a class is the equivalent of increasing the number
of on-track students by about 1 standard deviation (44 students). URM stands for underrepresented minorities and includes all race categories except white, Asian
and Indian.
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Table A6: Major Composition by Gender (%)

Women Men
Intended Major at Entry Major at Grad. Intended Major at Entry Major at Grad.

Hard science 15.07 14.29 49.37 33.77
Bio/environ. sci. 51.81 29.88 24.84 17.45
Social science 3.48 19.27 2.79 15.79
Human./arts/interd. 3.08 36.57 2.55 32.97
Undeclared 26.55 0.00 20.45 0.01

Note: See Appendix Table A7 for the majors that fall into each major category: hard science, biology/environmental studies, social sciences, and humani-
ties/arts/interdisciplinary. The sample includes only those students enrolled in the first quarter of General Chemistry (CHEM1A) in the fall quarter of their
freshman year at UCSB between the years 1997 and 2007.
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Table A7: Majors by Category
Hard Sci. Bio & Env. Studies Social Sci. Human., Arts, & Interdis.
Biochemistry Biochemistry-Molecular Biology Anthropology Art History
Chemistry Biological Sciences Geography Art Studio
Chemical Engineering Biopsychology Geophysics Asian & American Studies
Computer Engineering Physiology Physical Geography Asian Studies
Electrical Engineering Biology Economics-Accounting Black Studies
Earth Science Cell & Develp. Biology Economics-Mathematics Chicana and Chicano Studies
Hydrological Sciences Microbiology Economics Chinese
Mechanical Engineering Environmental Studies Political Science Classics
Pharmacology Psychology Communication Studies
Physics Sociology Comparative Literature
Computer Science Business Economics Creative Studies
Mathematics Dance
Financial Math & Stats Dramatic Art
Statistics English
Zoology Feminist Studies
Aquatic Biology Film & Media Studies
Ecology and Evolution Financial Mathematics & Statistics
Computer Science French

Germanic Languages
Global Studies
History or History of Public Policy
Interdisciplinary Studies
Italian Cultural Studies
Japanese
Language, Culture & Society
Latin Am/Iberian Studies
Law & Society
Linguistics
Medieval Studies
Middle Eastern Studies
Music & Music Composition
Philosophy
Portuguese
Religious Studies
Slavic Languages & Literatures
Spanish
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